Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Neurodegener ; 12(1): 31, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312133

RESUMO

BACKGROUND: Lysosomal dysfunction has been implicated in a number of neurodegenerative diseases such as Parkinson's disease (PD). Various molecular, clinical and genetic studies have highlighted a central role of lysosomal pathways and proteins in the pathogenesis of PD. Within PD pathology the synaptic protein alpha-synuclein (αSyn) converts from a soluble monomer to oligomeric structures and insoluble amyloid fibrils. The aim of this study was to unravel the effect of αSyn aggregates on lysosomal turnover, particularly focusing on lysosomal homeostasis and cathepsins. Since these enzymes have been shown to be directly involved in the lysosomal degradation of αSyn, impairment of their enzymatic capacity has extensive consequences. METHODS: We used patient-derived induced pluripotent stem cells and a transgenic mouse model of PD to examine the effect of intracellular αSyn conformers on cell homeostasis and lysosomal function in dopaminergic (DA) neurons by biochemical analyses. RESULTS: We found impaired lysosomal trafficking of cathepsins in patient-derived DA neurons and mouse models with αSyn aggregation, resulting in reduced proteolytic activity of cathepsins in the lysosome. Using a farnesyltransferase inhibitor, which boosts hydrolase transport via activation of the SNARE protein ykt6, we enhanced the maturation and proteolytic activity of cathepsins and thereby decreased αSyn protein levels. CONCLUSIONS: Our findings demonstrate a strong interplay between αSyn aggregation pathways and function of lysosomal cathepsins. It appears that αSyn directly interferes with the enzymatic function of cathepsins, which might lead to a vicious cycle of impaired αSyn degradation. Lysosomal trafficking of cathepsin D (CTSD), CTSL and CTSB is disrupted when alpha-synuclein (αSyn) is aggregated. This results in a decreased proteolytic activity of cathepsins, which directly mediate αSyn clearance. Boosting the transport of the cathepsins to the lysosome increases their activity and thus contributes to efficient αSyn degradation.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , alfa-Sinucleína/genética , Modelos Animais de Doenças , Homeostase
2.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768938

RESUMO

Spinocerebellar ataxia (SCA) 40 is an extremely rare subtype of the phenotypically and genetically diverse autosomal dominant ataxias caused by mutations of the CCDC88C gene. Most reported cases of SCA40 are characterized by late-onset cerebellar ataxia and variable extrapyramidal features; however, there is a report of a patient with early-onset spastic paraparesis as well. Here, we describe a novel missense CCDC88C mutation (p.R203W) in the hook domain of the DAPLE protein encoded by the CCDC88C gene that was identified in a female patient who developed late-onset ataxia, dysmetria and intention tremor. To explore the molecular consequences of the newly identified and previously described CCDC88C mutations, we carried out in vitro functional tests. The CCDC88C alleles were expressed in HEK293 cells, and the impact of the mutant DAPLE protein variants on JNK pathway activation and apoptosis was assessed. Our results revealed only a small-scale activation of the JNK pathway by mutant DAPLE proteins; however, increased JNK1 phosphorylation could not be detected. Additionally, none of the examined mutations triggered proapoptotic effect. In conclusion, we identified a novel mutation of the CCDC88C gene from a patient with spinocerebellar ataxia. Our results are not in accord with previous observations and do not support the primary role of the CCDC88C mutations in induction of JNK pathway activation in ataxia. Therefore, we propose that CCDC88C mutations may exert their effects through different and possibly in much broader, yet unexplored, biological processes.


Assuntos
Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Feminino , Células HEK293 , Hungria , Ataxias Espinocerebelares/genética , Degenerações Espinocerebelares/genética , Mutação , Ataxia , Proteínas dos Microfilamentos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
J Mol Biol ; 435(12): 167932, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572237

RESUMO

Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson's disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Hidrolases/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo
4.
Expert Opin Ther Targets ; 25(10): 877-888, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34720020

RESUMO

INTRODUCTION: Alterations in the activity of tryptophan 2,3-dioxygenase (TDO) cause imbalances in the levels of serotonin and other neuroactive metabolites which can contribute to motor, psychiatric, gastrointestinal, and other dysfunctions often seen in Parkinson's disease (PD). TDO is a key enzyme of tryptophan metabolism at the entry of the kynurenine pathway (KP) which moderates production of neuroactive compounds primarily outside the central nervous system (CNS). Recent data from experimental models indicate that TDO modulation could have beneficial effects on PD symptoms not targeted by traditional dopamine substitution therapies. AREAS COVERED: Based on data available in PubMed and ClinicalTrials databases up until 1 August 2021, we summarize current knowledge of KP alterations in relation to PD. We overview effects of TDO inhibition in preclinical models of neurodegeneration and discuss findings of the impact of enzyme inhibition on motor, memory and gastrointestinal dysfunctions, and neuronal cell loss. EXPERT OPINION: TDO inhibition potentially alleviates motor and non-motor dysfunctions of PD. However, data suggesting harmful effects of long-term TDO inhibition raise concerns. To exploit possibilities of TDO inhibitory treatment, development of further selective TDO inhibitor compounds with good bioavailability features and models adequately replicating PD symptoms of systemic origin should be prioritized.


Assuntos
Doença de Parkinson , Triptofano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Doença de Parkinson/tratamento farmacológico , Triptofano/metabolismo , Triptofano Oxigenase/metabolismo
5.
Biomedicines ; 9(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34680558

RESUMO

Ischemic stroke is among the leading causes of mortality and long-term disability worldwide. Among stroke risk factors the importance of genetic background is gaining interest. There is a growing body of evidence of changes of metabolite levels and enzyme activities involved in the conversion of Trp during the course of cerebral ischemia. We compared the frequencies of ten SNPs of five genes related to Trp metabolism between groups of 122 ischemic stroke patients and 120 control individuals. Furthermore, we examined the mRNA levels of TPH1, IDO1 and KYAT1 genes in peripheral venous blood with the aim of assessing (i) whether there are changes in their expression during the course of stroke and (ii) does any of their investigated SNPs have an impact on gene expression. In seven cases out of ten studied polymorphisms we detected significant differences in frequencies in relation to ischemic stroke occurrence, etiology, and clinical parameters. We also detected changes in the expression of TPH1 and IDO1 genes during the course of the disease. We found that those IDO1 variants which show a trend towards elevated mRNA level are more frequent in stroke patients than in controls. Our results are important novel observations which suggest a causal relationship between elevated IDO1 expression and stroke etiology.

6.
J Parkinsons Dis ; 11(1): 123-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33325399

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Considering the devastating symptoms, high prevalence, and lack of definitive diagnostic test, there is an urgent need to identify possible biomarkers and new therapeutic targets. Genes identified and/or proposed to be linked to PD encode proteins that fulfill diverse roles in cellular functions. There is a growing interest in identifying common traits which lead to the disease. Long non-coding RNAs have recently emerged as possible regulatory hubs of complex molecular changes affecting PD development. Among them, NEAT1 has attracted particular interest. It is a major component and the initiator of nuclear paraspeckles, thus regulating transcription and modifying protein functions. This review summarizes data available on the role of NEAT1 in PD. NEAT1 upregulation in PD has repeatedly been reported, however, whether this is part of a protective or a damaging mechanism is still a topic of debate. It has been proposed that NEAT1 propagates PD via its interaction with PINK1 and several micro RNAs and by modulating SNCA expression. On the other hand, findings of NEAT1 acting as a bona fide LRRK2 inhibitor argue for its protective role. These contradictory results could be due to the different disease models implemented. This calls attention to the difficulties posed by the complex patho-mechanisms of neurodegenerative disorders and the limitations of disease models. However, the potential of NEAT1 as a biomarker and as a therapeutic target for PD highly warrants further research to elucidate its exact role in this neurodegenerative disorder.


Assuntos
Doença de Parkinson , RNA Longo não Codificante , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
Neurochem Res ; 45(9): 2072-2081, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32524313

RESUMO

The potential role of Sirt1 and Sirt2 subtypes of Sirtuins (class III NAD+-dependent deacetylases) in the pathogenesis of Huntington's disease (HD) has been extensively studied yielding some controversial results. However, data regarding the involvement of Sirt3 and their variants in HD are considerably limited. The aim of this study was to assess the expression pattern of Sirt1 and three Sirt3 mRNA isoforms (Sirt3-M1/2/3) in the striatum, cortex and cerebellum in respect of the effect of gender, age and the presence of the transgene using the N171-82Q transgenic mouse model of HD. Striatal, cortical and cerebellar Sirt1-Fl and Sirt3-M1/2/3 mRNA levels were measured in 8, 12 and 16 weeks old N171-82Q transgenic mice and in their wild-type littermates. Regarding the striatum and cortex, the presence of the transgene resulted in a significant increase in Sirt3-M3 and Sirt1 mRNA levels, respectively, whereas in case of the cerebellum the transgene resulted in increased expression of all the assessed subtypes and isoforms. Aging exerted minor influence on Sirt mRNA expression levels, both in transgene carriers and in their wild-type littermates, and there was no interaction between the presence of the transgene and aging. Furthermore, there was no difference between genders. The unequivocal cerebellar Sirtuin activation with presumed compensatory role suggests that the cerebellum might be another key player in HD in addition to the most severely affected striatum. The mitochondrially acting Sirt3 may serve as an interesting novel therapeutic target in this deleterious condition.


Assuntos
Cerebelo/metabolismo , Doença de Huntington/metabolismo , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Sirtuína 3/genética , Animais , Córtex Cerebral/metabolismo , Feminino , Doença de Huntington/genética , Masculino , Camundongos Transgênicos
8.
Brain Res ; 1730: 146672, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953211

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder that poses serious burden to individuals and society as well. Although a number of PD associated genetic factors have been identified, the molecular mechanism of the disease so far has not been completely elucidated. Involvement of long non-coding RNAs (lncRNAs) in the pathology of neurodegenerative disorders is attracting increased interest because of the diverse mechanisms lncRNAs affect gene expression and cellular homeostasis at different levels. We aimed to test the feasibility of detecting alterations in lncRNA levels in easily accessible samples of PD patients by routine laboratory technique. By narrowing the number of selected lncRNAs implicated in neurodegeneration and increasing the number of PD samples included, we found one out of 41 lncRNAs readily detectable in increased level in peripheral blood of PD patients. We detected NEAT1 to be significantly up-regulated in PD patients in multiple comparisons. NEAT1 is the core element of nuclear paraspeckles and it plays role in regulation of transcription, mRNA and miRNA levels, mitochondrial and cellular homeostasis. Our finding is in accord with recent data demonstrating changes in the level of NEAT1 in neurons of PD patients and in several models of the disease. However, to our knowledge this is the first study to report NEAT1 up-regulation in blood of PD patients. Identification of altered expression of this lncRNA in the periphery might help to a better understanding of the mechanisms underlying PD, and can contribute to the identification of new therapeutic targets and disease markers.


Assuntos
Doença de Parkinson/sangue , RNA Longo não Codificante/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...